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Abstract
This paper describes a proposed method for mapping potential bushfi re hazard. Subject to endorsement by the 
Queensland Department of Emergency Services, it is proposed to utilise this methodology to fulfi l the Gold Coast 
City Council’s responsibility under the Queensland Integrated Planning Act 1997, in relation to mapping potential 
bushfi re hazard pursuant to the State Planning Policy 1/03 Mitigating the Adverse Impacts of Flood, Bushfi re and 
Landslide (SPP 1/03). The method utilises high-density, small footprint LIDAR and high-resolution multispectral 
IKONOS data in combination with Gold Coast City Council (GCCC) GIS datasets to produce an accumulated fi ne 
fuel model and an elevated fuel model. Fuel parameters generated using these (cartographic) models are combined 
with slope and aspect data generated using standard algorithms and customised data scaling techniques applied to a 
detailed digital elevation model (DEM) interpolated from LIDAR data. Data analysis and aggregation is achieved 
in a spatial decision support system using multi-criteria evaluation (MCE) and weighted linear combination (WLC) 
to produce a high resolution, continuous scale hazard surface. Bushfi re hazard factors and constraints are scaled and 
weighted to conform to recommendations outlined in the SPP 1/03 appendix 3. The spatial decision support system 
described here produces a highly detailed cartographic product that is suitable for identifying properties and assets at 
risk from bushfi re, and provides a valuable tool for bushfi re managers and town planners.
Introduction
The Queensland Integrated Planning Act 1997 provides a framework for managing development in the State. 
As part of this framework, State Planning Policies provide (under Schedule 4) a way of ensuring that the development 
requirements of the State are integrated with those of local governments. State Planning Policy 1/03 Mitigating the 
Adverse Impacts of Flood, Bushfi re and Landslide (SPP 1/03) took effect on 1 September 2003. Information and 
advice for interpreting and implementing SPP 01/03 is provided as State Planning Policy 1/03 Guideline – Mitigating 
the Adverse Impacts of Flood, Bushfi re and Landslide, and within this document, Appendix 3, Undertaking Natural 
Hazard Assessment – Bushfi re, (SPP 1/03 Guideline) deals specifi cally with the recommended methodology for 
defi ning bushfi re hazard potential in the landscape. 
Problems with the methodology include a limited ability to account for fi ne scale spatial variability. The system 
employs a two-step categorical classifi cation process that results in scalar insensitivity. Additionally the vegetation 
community criterion is often reliant on categorical classes for vegetation communities (such as regional ecosystem 
maps) that do not account for spatial variation within or between communities such as variations in stand density 
and biomass, or ecotone effects. Similarly fi ne scale variations of slope or aspect values are lost within broad classes. 
Given that bushfi re is a local scale phenomenon and its behaviour is signifi cantly infl uenced by variations within 
the landscape, it follows that hazard level can be described using continuous scale factors. Relatively invariant 
factors such as potential fuel load, slope and aspect can all be measured at a continuous scale using remotely sensed 
data, and a data aggregation solution capable of combining bushfi re hazard criteria while retaining continuous scale 
measurement can be found in spatial decision support systems (SDSS). 
Background
The process of defi ning bushfi re hazard potential under the requirements of the Queensland Integrated Planning Act 
1997 considers the relatively invariant bushfi re factors because of town planning time horizons. These are slope, 
aspect and vegetation communities, all of which can be measured using remotely sensed data. Measurements for 
slope and aspect are routinely extracted from digital elevation models (DEMs). Small footprint, high density LIDAR 
is capable of delivering a high-resolution detailed DEM using iterative interpolation routines. LIDAR can also be 
used to measure structural properties of vegetation communities such as canopy height, canopy base height and 
understorey densities (Peterson et al.., 2003). Extraction of measurements for both slope and aspect involves straight 
forward DEM transformations, which provide inputs to a SDSS with minimal additional processing. Extraction of 
vegetation structural properties from LIDAR (in this study) involves the extraction of above ground heights from 
non-ground returns, and multiple grid generation.
High resolution, multi-spectral satellite data is also used to describe vegetation characteristics. In particular band 
ratios such as normalised difference vegetation index (NDVI) and the red vegetation index (RVI) have been shown to 
be good indicators for fuel accumulation potential (Brandis & Jacobson, 2003). The increasing availability and utility 
of remotely sensed image helps to reduce uncertainty in mapping fuels and improve our ability to assess spatially and 
temporally variant characteristics to a level that is simply not possible with traditional vegetation mapping techniques. 
A number of models aimed at deriving measurements relevant to fi ne fuel accumulation from multispectral satellite 
imagery have been shown both theoretically and empirically to predict bio-physical parameters relevant to fuel 
accumulation (Gong et al., 2003). 
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Spatial Decision Support Systems
Spatial decision support systems (SDSS) provide a powerful and easy to use interface to combine cartographic 
models and other image data to defi ne solutions to unstructured and semi-structured problems. SDSS supports a 
range of decision-making styles and approaches by generating a series of feasible alternatives through an interactive 
and recursive process in which decision making proceeds by multiple passes, sometimes involving alternative routes 
rather than a simple linear path. Examples where SDSS techniques have been used in fi re management include Varela 
et al. (2005), Barrett et al. (1999), and Jones et al. (2004). 
The basic strategy is to divide the problem into well-defi ned smaller pieces, analyse each piece separately, and then 
integrate the pieces logically to produce a solution, following Jankowski’s (1995) general framework. Decision 
criteria are formally evaluated and allocated a score based on expert opinion regarding the weight each criteria will 
carry within the decision making process. In many instances this process is achieved using multi-criteria evaluation 
(MCE) and, in this instance, expert input and guidance has been provided both through the SPP Guideline 1/03, and 
through its principal author (Ray Robinson, pers. comm. 2005). Integration of MCE techniques and the Gold Coast 
City GIS framework is achieved through weighted linear combination (WLC). 
The criteria considered in defi nition of potential fi re hazard are slope, aspect and vegetation communities. Following the 
additive system (ranked classifi cation) recommended in the SPP Guideline 1/03 where a linear scale (0 – 18.5) is used, 
the following criteria weightings are developed: Slope = 0.27; Aspect = 0.19; Vegetation Communities = 0.54.
Slope
The infl uence of slope is integral with that of aspect and wind. The complex interaction of these factors are responsible 
for the mechanics of bushfi re spread rate and direction in the landscape.  When the direction of increasing elevation 
of a slope aligns with wind direction the rate of spread of a fi re is increased. For stable meteorological conditions 
and fuel loading, the advance of a bushfi re up a slope of 10 degrees has been reported to be double the rate of spread 
of bushfi re on level ground. The rate of spread (ROS) of the fi re up a slope of 20 degrees is said to be four times the 
rate of spread of the fi re on level ground (McRae, 1998). The interactive effects of wind and slope are the principle 
determinants of the direction of fi re spread, and the magnitude of this effect is dependant on wind speed. At low 
wind speeds slope is the predominant determinate of spread direction, however as wind speed increases, this factor 
becomes the dominant infl uence on spread direction. Strong winds can drive a fi re front perpendicular to slope 
(Cheney et al., 1998).
The effect of slope in bushfi re dynamics has been described in terms of the delivery of both convective and radiative 
heat, and the enhanced proximity of available fuel. In a sense the effect is comparable to that of elevated fuel, in that 
increasing slope places available fuel closer to the path of convective currents and radiative heat, thereby increasing 
the proximity of fl ash point temperatures to adjacent fuel sources. Nobel et al. (1981) and others have considered the 
effect of slope to be exponential to rate of spread.
The 30% slope threshold suggested by both the SEQ fi re and biodiversity consortium and the SPP Guideline 1/03 
represents an important point at which the behaviour of bushfi re is considered to become more dynamic in terms 
of ROS and intensity (according to available fuel). Bushfi re dynamics are increasingly infl uenced at higher slope 
percentages (the Gold Coast LGA contains slope percentages that often range to and above 200%), and setting the 
slope criterion at the 30% threshold defi nes the entire range above the threshold at a high risk. While this seems like 
a blanket classifi cation, the use of this approach is supported by operational constraints. For example, slopes above 
30% present signifi cant access constraints for both men and machinery and hence the establishment of fi re breaks 
and other mitigation works.
Slope defi nition algorithms applied to a detailed digital elevation model (DEM), interpolated from Lidar ground 
returns, produce a raster slope surface. Using attribute value fi les, cell values are reassigned to refl ect the classifi cation 
outlined in the SPP guideline 1/03. Figure 1 shows the effect of assigning continuous scale values from 5% to 30%, 

and Figure 2 shows the results of assigning the SPP 
slope class values (both images are rescaled to the 8-bit 
raster integer value range 0-255 in order to standardise 
inputs for WLC). It can be seen from these results that 
the major difference is in continuity. The stepped effect 
of the SPP slope class image (right) is ameliorated by the 
use of continuous scale (left). 
Aspect
On the Australian eastern sea board (particularly at Gold 
Coast latitudes) the difference between south-easterly 
and north-westerly air fl ow is quite marked. The effect 
of moisture laden south-easterly winds present a stark 
contrast to the hot dry westerly and north-westerly 
winds that arrive from across the arid interior. Westerly 
and north-westerly winds are strongly associated with 
hazardous bushfi re conditions, and slopes facing these 

Figure 1: Slope reassigned in continuous scale     Figure 2: Slope in SPP classes
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aspects are exposed to early afternoon high 
temperatures and hot, dry air fl ows. Figure 3 
shows the effect of declaring the aspect criterion 
reassigned in continuous scale for a cone, and 
Figure 4 shows the effect of assigning values 
corresponding to the SPP aspect classifi cation. 
Vegetation Communities
Vegetation communities are considered in terms 
of fuel types. This criterion is split between two 
fuel models: 1. An accumulated fi ne fuel model 
generated using a combination of NDVI and 
GCCC GIS data, and 2. An elevated fuel model 
generated using small foot print LIDAR. Polygon 
based GCCC vegetation maps are used to account 

for vegetation types described in the SPP Guideline 1/03 (Appendix 3) as virtually fi re proof (i.e. intact rainforest, 
mangrove forest, intact riverine rainforest). 
Accumulated fuel model
Fine fuels are organic materials less than 6 mm in diameter at the surface. Fine fuel in eucalypt forests (litter) consists 
predominately of leaves, twigs, woody fruits and bark. Cheney et al.. (1992) also considers grasses, herbs and bracken 
(near-surface fuels) as contributing to the fi ne fuels category, and Corbeels (2001) makes a further distinction based 
on the stage of decomposition. The fi ne fuels fraction of total fuels has also been described as ‘fl ash’ fuels (principally 
USA e.g.. Keely et al., 1999) because it is readily ignited during periods of fi re weather. There is strong agreement that 
the contribution of fi ne fuels in bushfi re dynamics is very signifi cant. Fine fuels provide continuity of fl ammability 
and promote rate of spread. The report of the inquiry into the 2002-2003 Victorian bushfi res (State Government of 
Victoria, 2003), nominates fi ne fuels as being responsible for the creation of the fi re front.
The rate of fi ne fuel accumulation is a required input to determining fuel availability, and these factors are closely 
related to the large body of work conducted as part of global efforts to implement carbon accounting systems (e.g. 
Corbeels 2001; Saabe & Veroustrate, 2003; Boresjö Bronge & SwedPower, 2004). In this context researchers have 
developed a number of models that use satellite data inputs (principally band ratios) to produce measurements such 
as Net Primary Production (NPP) (Tans et al., 1990); fraction of photosynthetically active radiation (FPAR) absorbed 
by green plants (Chen & Cihlar, 1996); leaf area index (LAI) (Chen and Black, 1992; Hua et al., 2001); and light use 
effi ciency (LUE) a measure of the effi ciency which APAR (absorbed photosynthetically active radiation) is converted 
to biomass (Gower et al., 1999). There have been numerous examples where this approach has been applied to 
mapping fuel properties (e.g. Kötz et al., 2003; Brandis and Jacobson, 2003). 
The fundamental connection between carbon accounting and bushfi re fuel mapping is that bushfi re fuel is essentially 
a transient state of carbon in the vegetation carbon cycle. In a theoretical and logical sense fuel accumulation can 
be represented as a percentage of forest productivity (per unit area per unit time) that is determined by both the 
rate of litterfall and the rate of decomposition. This suggests that LAI calculations (after Hua et al. 2001) can be 
linked to litter turnover calculations using Olsen’s (1963) negative exponential decomposition equation, provided 
that accumulation and decomposition rates can be adequately defi ned. 
Olsen’s (1963) equation relates fuel accumulation over time to canopy biomass which can be approximated using 
LAI - (e.g. Boresjö Bronge & SwedPower, 2004), or by RVI (red vegetation index or simple ratio) and canopy 
height - e.g. (Brandis & Jacobson, 2003). Brandis and Jacobson (2003) and Fox et al., (1979) deduced that rate of 
accumulation could be applied as a function of canopy biomass despite short term temporal variability due to weather 
impacts on foliage. Statistical analyses of fi eld measurements show longer-term stability in the fuel accumulation rate 
in SEQ Eucalypt forests (Birk, 1979). 
The use of NDVI to defi ne biophysical parameters such as LAI is quite common however it is not straightforward. 
Remotely sensed multi spectral image data contains refl ectance information that is affected by numerous causes. 
Phenology, growth rate and disturbance induce inter-annual and seasonal changes in biophysical properties, while 
sensor conditions such as viewing angle, atmospheric path length, signal contamination produced by water vapour, 
aerosols and background soil colour represent extraneous information in the context of mapping accumulated fuels. 
Minimisation of sensor and most signal anomalies can be optimised by careful scene selection and by rigorous 
geometric, radiometric and atmospheric correction. Time related NDVI variability is usually accounted for using 
time series data e.g. (Danaher et al., 1992, Hua et al. 2001), however, in this instance (due to cost constraints) a 
single date image data set has been used. This meant that NDVI time series based methods of defi ning the herbaceous 
/woody partition were unavailable, and because account must be taken of the spectral refl ectance differences between 
herbaceous and woody surfaces (in order to avoid inaccuracies produced by applying woody biomass transformations 
to herbaceous cover such as pastures and other grasslands), LIDAR data was manipulated to yield a canopy height 
surface which presented a simple means of distinguishing the partition. The WLC use of relative scale data sets 
rather than absolute scale allowed the NDVI/LAI conversions to be effected using two pre-existing equations without 
developing site specifi c regression equations. 

Figure 3: Aspect reassigned in continuous scale    Figure 4: Aspect in SPP classes
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The equations used for the NDVI/LAI conversions used here are:
   Woody LAI    LAI = -1.51 + 1.17RVI  
   Herbaceous LAI   LAI = -0.9 + 0.72RVI                   
Note: NDVI and RVI can be inter-converted (after Hua et al. 2001) 
The SPP Guideline 1/03 (Appendix 3) categorises grasslands and pasture principally according to the degree of 
disturbance, i.e. grazed or slashed grasslands are ranked lower than undisturbed grasslands. While these LAI 
transformations account for differences between woody and herbaceous vegetation components, the difference 
between disturbed and undisturbed grasslands and pasture is less clear. In this context GCCC GIS inputs - landuse maps 
and grass mowing contract maps, were used to defi ne (spatially) the distinction between disturbed and undisturbed 
grasslands and to rank the degree of disturbance based on established mowing categories as well as grazing pressure 
information. Herbaceous LAI differences attributable to disturbance were weighted to refl ect the SPP guideline 1/03 
(Appendix 3) ranks for disturbed and undisturbed grassland and pasture (i.e. this component is further reduced by 
a factor of up to 0.4 to refl ect SPP Guideline 1/03 scores i.e. undisturbed grassland ranked at 5/10 and disturbed 
grassland at 2/10).
Elevated fuel model
The spread of fi re into elevated fuel layers can signifi cantly alter fi re behaviour. Higher fuel loads due to the presence 
of shrubs and the effects of convection cause larger fl ames and a higher rate of spread (ROS). Shrub layers contribute 
to fl ame development by providing a vertical path for ignition and thereby increase the risk of crowning. Shrubs act 
as a lattice for suspended fuel and increase the likelihood of spotting and ember attack through convective activity. 
McArthur, (1966) noted that the collapse of a convection column at a fuel break can precipitate an ember attack. 
Elevated fuel (including bark fuel) is closely associated with ember attack, and at the urban/bushland interface it 
poses a signifi cant threat. Buckley (1994) reported from a forest site in Gippsland that the presence of shrub fuels 
increased the available fuel by a factor of 2.5 and noted that up to 42% of the shrub layer fuel weight could be made 
up of suspended (dead) fuel.
LIDAR data can be manipulated to indicate the presence/absence of shrub layer fuel. This is achieved through 
the following processes by, fi rstly, partitioning the data into ground and non-ground returns using a progressive 
morphological fi lter (e.g. Zhang et al., 2003). A detailed digital elevation model (DEM) is interpolated using LIDAR 
ground returns and LIDAR non-ground returns are updated with DEM values to provide ground elevation values for 
each non ground point. The difference between non-ground and ground elevation values produces an ‘above ground’ 
value for all non-ground returns. Non-ground returns with aboveground values of 4 m or less, are divided vertically 
into three fi les per unit area in a GIS . The lowest 0.6m is not considered so as to avoid the signifi cant error range 
of the morphological fi lter resulting in an increased likelihood of including mis-classifi ed ground returns rather than 
non-ground returns. Three gridded fi les are prepared per unit area from non-ground returns using the above ground 
ranges 0.6m–2m; 2m–3m and 3m–4m. Ground return points with standardised *Z values (equal to the lower limit of 
the aboveground increment range minus 3m) substituted for the original Z value are included in the gridding process 
in order to increase defi nition. Additional points (also with Z values equal to the lower limit of the aboveground 
increment range minus 3m) are created over water bodies and included in the interpolation in order to control the 
‘undershooting’ effect associated with minimum curvature interpolation. The resultant gridded fi les are rescaled as 
8-bit raster objects and then combined using the equation; 
{(0.6m–2m * 0.5) + (2m–3m * 0.25) + (3m–4m * 0.25)}. Note that this equation weights the lower fi le more heavily 
due to the broader range as well as the signifi cant role of near ground fuel in fi re behaviour.
*Z values refers to reduced level.
Field Verifi cation
Field verifi cation carried out in April 2005 at the Lower Beechmont Conservation Area and Coombabah Lakelands 
shows a high correlation between fi eld observations of elevated fuel and the LIDAR based elevated fuel model. 
Multi-grid composite surfaces generated following the methodology described here were used to plot coordinates 
representative of various levels of elevated fuel. A fi eld team then navigated to these coordinates (using Trimble Geo 
Explorer XT GPS enabled PDAs), and photographed and classifi ed elevated fuel levels in situ. A total of 32 points 
were sampled with an accuracy rate of 87% in predicting the presence of elevated fuel in the form of a shrub layer. Six 
percent were found to be an error associated with mis-classifi ed ground returns caused by platform instability (pitch, 
roll and yaw) at swath edges (which can be corrected in a GIS). The remaining 5% error is thought to be associated 
with regrowth between the LIDAR collection dates (2001) and the date of fi eld sampling (2005).
Data Aggregation
Data aggregation is achieved using the following data fl ow: base data → data transformations and processing routines 
→ map algebra → WLC → cartographic output. The frame work (Figure 5) summarises the process. In general, 
slope and aspect are derived from the DEM, fi ne fuel and elevated fuel models are described above and the fi nal 
aggregation is achieved using WLC after Voogd (1983), where the process follows the form: S = Σwx, so that the 
fi nal hazard score (S) is the sum of criterion scores (x) by their respective weightings (w). This is shown graphically 
in Figure 6. This example is based on the standard 1:10 000 Nerang map sheet area and shows how the SDSS 
criteria (elevated fuel and fi ne fuel share the 0.54 weighting for vegetation communities), are combined as 8-bit raster 
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data scaled from 0 - 255. The result of data aggregation 
process is shown as Figure 7. This image indicates the 
level of high hazard as lighter and low hazard as darker. 
Bushfi re hazard potential is quantifi ed as a continuous 
scale raster surface.
The cartographic output is achieved by classifying the 
raster hazard surface to match the SPP 1/03 thresholds. 
In this case the upper threshold was adjusted due to the 
characteristically skewed image histogram associated 
with high resolution image data. The ‘high’ class was 
defi ned as 152 - 255 (which corresponds to 179 - 255 
when a 10% clip is applied to the histogram) and the 
‘low’ defi ned as 0 - 89. A 5x5 adaptive median fi lter 
was applied to eliminate stray pixels. The result is 
then combined with hill shading to assist cartographic 
interpretation, and supplied as an .ecw image fi le.

Discussion
Among the benefi ts of using this method for mapping 
bushfi re hazard potential is the utility of deploying 
derivations of the same data inputs to closely related 
mapping objectives such as predictive fuel load 
modelling/mapping, and rate of spread modelling. Also 
it should be noted that this is only a basic use of decision 
support systems and their utility as a management tool 
can account for multiple objectives as well as multiple 
criteria. Many additional criteria (factors and constraints) 
can be included within MCE processes regarding bushfi re 
hazard potential. Barrett et al. (1999) and Jones et al. 
(2004) show that the fl exibility and recursive character of 
SDSS can assist with achieving consensus among decision 
makers by stripping the components of a decision back to 
nuts and bolts.
The use of remotely sensed data helps to address the 
limited capacity for polygon based mapping to account for 
important fi ne scale spatial variation. The applications of 
remote sensing in the areas of fuel moisture content, fuel 
type and fi re risk mapping are manifold and advancing 
at a great rate. The technology and capacity to provide 
a wide range of spatial solutions to bushfi re managers 
using remote sensing and cartographic modelling is 
well advanced and well proven.  Many bushfi re/wildfi re 
management response agencies in Southern Europe 
and the United States have recognised the utility of this 
kind of work and have adopted the systems into their 
management toolkits. Support for R & D in this area 

continues to produced tangible results and enhance public 
safety through technological advance.

Figure 5 Data aggregation framework

(Slope x 0.27)     +    (Aspect x 0.19)    +    (Elevated fuel x 0.27)   +  (Fine fuel x 0.27)

Figure 6. Graphic representation of the WLC process

Figure 7 Bushfi re Hazard Surface
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